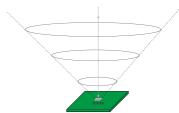


■特徴


- ・対象物に触れることなく非接触で温度を計測できる温度センサモジュールです。
- ・世界最小 1.6x1.6mm のサイズのセンサです。チップ部品と変わりません。
- ・内蔵のサーモパイルによって対象物からの赤外線エネルギーを測定し温度を算出します。
- 対象物温度範囲は-40℃~+125℃の範囲でお使いいただけます。
- ・I2C インターフェース
- · 2.2V~5.5V 動作

■仕様

センサ	テキサスインスツルメンツ TMP006							
測定範囲	-40°C~+125°C							
精度	ローカル(内蔵)温度センサ ±0.5℃							
	対象物 ±1~3℃程度							
	※測定物・環境によって大きく変わります。							
変換時間	0.25, 0.5, 1, 2, 4 秒							
分解能	ローカル温度センサ 0.03125℃							
	サーモパイル出力電圧 156.25nV							
インターフェース	I2C							
クロック周波数	最大 3.4MHz							
電源電圧	DC2.2V~5.5V							
消費電力	240 μ A							
モジュールサイズ	約10×10mm							
ツ中吸の割点性由は社会	の世の共称 RVL 4 別ウ理技にトーマナモノホトリナナ							

■センサ測定範囲のイメージ

- ※実際の測定精度は対象物の材質・形状・色、測定環境によって大きく変わります。
- ※製作・使用にあたり巻末の使用上の注意をよく読んでお使いください。

■内容品

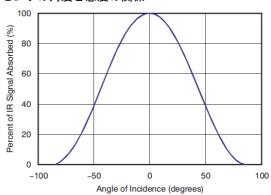
ピンヘッダ (8ピン分)

ピンフレーム (8ピン分)

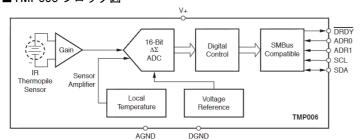
※センサは大変小さいので表面に傷をつけたり、指紋を付けたりしないよう注意して扱ってください。

※ハンダ付けの時にハンダに含まれるフラックスが飛散することがあります。飛散した粒がセンサにつかないように注意しましょう。

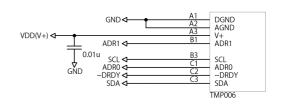
■ピン配置 (通常のDIPと同じ反時計回りの配置です)


用途	名称	ピン番号	写真	ピン番号	名称	用途
グランド	GND	1	0 127	8	VDD(V+)	電源 2.2V~5.5V
I2C アドレス 1	ADR1	2		7	SCL	I2C クロック
I2C アドレス 0	ADR0	3		6	SDA	I2C データ
データレディ	~DRDY	4		5	NC	<未接続>

- ●中央のセンサは触らないようにしてください。●SCL, SDA は外部でプルアップが必要です。
- ●ADR1, ADR0 は I2C アドレスを設定するためのものです。両方 GND に接続するとスレーブアドレスは Ob1000000x (x は R/W ビット) になります。必ず論理を確定した状態でお使いください。


■I2C アドレスの設定

	T	
ADR1	ADR0	SMBus アドレス
0	0	1000000
0	1	1000001
0	SDA	1000010
0	SCL	1000011
1	0	1000100
1	1	1000101
1	SDA	1000110
1	SCL	1000111


■センサの角度と感度の関係

■TMP006 ブロック図

■TMP006 モジュール回路図

■レジスタマップ

ポインタ (16進)	レジスタ	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
00h	V _{OBJECT}	V15	V14	V13	V12	V11	V10	V9	V8	V7	V6	V5	V4	V3	V2	V1	V0
01h	T _{AMBIENT}	T13	T12	T11	T10	Т9	Т8	T7	T6	T5	T4	Т3	T2	T1	T0	0	0
02h	設定	RST	MOD3	MOD2	MOD1	CR3	CR2	CR1	EN	DRDY	0	0	0	0	0	0	0
FEh	メーカーID	ID15	ID14	ID13	ID12	ID11	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
FFh	デバイスID	ID15	ID14	ID13	ID12	ID11	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0

■使い方

電源オンですぐに動作を開始しますので、レジスタを読み取ることで測定を行えます。(デフォルトは変換レート毎秒 1 回)このセンサはセンサ自身の温度と対象物からの赤外線エネルギー電圧から対象物温度を計算して求めます。センサ自身の温度は 14 ビットで $1/32^{\circ}$ (0.03125 $^{\circ}$)単位の分解能で計測できます。

パーモパイルから得られる赤外線エネルギーは 16 ビットで 156.25nV の分解能で得られます。-5.12mV~+5.12mV までとなります。対象物の温度は次の式で計算します。浮動小数点演算になります。

V_{OB.}: Voltage in TMP006, Register 0 [単位はV(読み値に1.5625E-07を掛けてください)]

T_{DIE}: Temperature in TMP006, Register 1 [単位はK (読み値に0.03125を掛けて 273.15を足してください)]

$$S = S_0 [1 + a_1(T_{DIE} - T_{REF}) + a_2(T_{DIE} - T_{REF})^2]$$

 S_0 : Calibration factor $5 \times 10^{-14} \sim 7 \times 10^{-14} \, (6 \times 10^{-14})$

$$a_1$$
: 1.75 × 10⁻³ T_{REF} : 298.15 K

 a_2 : -1.678×10^{-5}

$$V_{os} = b_0 + b_1(T_{DIE} - T_{REF}) + b_2(T_{DIE} - T_{REF})^2$$

 b_0 : -2.94×10^{-5}

 b_1 : -5.7×10^{-7}

 b_2 : 4.63 × 10⁻⁹

T_{REF}: 298.15 K

$$T_{OBJ} = \sqrt[4]{T_{DIE}^{4} + \left(\frac{f(V_{OBJ})}{S}\right)}$$

$$f(V_{OBJ}) = (V_{OBJ} - V_{OS}) + c_{2}(V_{OBJ} - V_{OS})^{2}$$

$$c_{2}: 13.4$$

※TOBJは絶対温度になるので摂氏にするために273.15を引くこと

■使用上の注意

- ・電源極性・モジュールの向きを間違えないでください。一瞬でもICが破壊されてしまいます。
- ・対象物温度とセンサ自身の温度の温度差が大きくなればなるほど精度が悪くなります。
- ・本キットはエンジニアの方を対象にした製品です。本製品をお使いになるにはある程度の電気的知識を必要とします。・本モジュールを使用したことによる、損害・損失については一切補償できません。
- ・センサ表面が汚れた場合は綿棒などで軽くふき取ってください。
- ・製造上の不良がございましたら、良品とお取替えいたします。それ以外の責についてはご容赦ください。
- ・この製品は鉛フリー・RoHS 適合品です。MADE IN JAPAN

Copyright (c) 2013 Strawberry Linux Co.,Ltd. 無断転載を禁止します 株式会社ストロベリー・リナックス 2013年3月26日 第1版